4th is, thm. let
$$
N \triangleleft
$$
 and π_{N} : $G \rightarrow G/N$ be the projection map.
\nThen ⁽¹⁾ T. $\{L \mid N \triangle L \triangle G\} \rightarrow \{L \le G/N\}$, $L \mapsto \pi_{N}(L)\}$
\nis a bijection.
\n(2) T1 gives a bijection between the normal subgas $L \triangle G$
\nwith $N \le L$ with the forward subgas $L \triangle G$
\nwith $N \le L$ with the forward subgas $L \triangle G$
\n $Contrime N$. Moreover $L \mapsto \pi_{N}(L)$, $L \mapsto \pi_{N}(L)$
\nare inverse \pm each other.
\n(2) $gL = Lg$ in $G \implies gN/L = L(gN)$ in G/N .
\nSo L normal $\Rightarrow L$ normal.
\n $T + \overline{L}$ is normal, then $\pi_{N}(g L) = \pi_{N}(g) \pi_{N}(L) \pi_{N}(g)$
\n $= \overline{L}$
\nSo $g Lg^{-1} \subseteq \pi_{N}^{-1}(L) \Rightarrow L$ So, L is normal

Def. A normal subgp $M \nsubseteq G$ is maximal if $\not\exists$ $N \triangleleft G$ $s.t.$ $M \nsubseteq N \nsubseteq G$. $Rmp.$ M <1 G is max iff G/M is simple. Pf. By 4th iso thm. \Box .
Rmk. Simple gps are the "building blocks" of JPS Series of gps. Def. Let $\{1\}$ =Ho < H, < - < Hn=G be a finite chain of subgps $We say that it as Shhrund if $H_i \triangleleft H_{i+1} \forall i$$ normal $if \forall i \in \mathcal{A}$ The guotient gps Him /Hi are called the quotient (or factor) gps \int of the series. Def. A submormal (rep. normal) series {H:3 is a composition (resp. principal) series if all its quotient gp Hiei IHⁱ are simple. Here {Him /Hi} are now called composition factors. rever, rise this are now causa composition factors.
Rmh Every finite gp has a composition series. / 2 does not have • Given a composition series ${22 \leq 10 \leq H_1 < ... < H_n \leq G_n}$ We have a sequence of short exact sequences

 $1\rightarrow H_1\rightarrow H_2\rightarrow H_1/4$, \rightarrow) \rightarrow finite simple gps $1 \rightarrow H_1 \rightarrow H_3 \rightarrow H_3/H_2 \rightarrow 1$ $\frac{1}{2}$ \rightarrow $H_{n-1} \rightarrow H_n = G \rightarrow H_n / H_{n-1} \rightarrow$ Than (Jordan - Hölder) Let G be a finite gp . If \S 23 = Ho < H₁ < ...< Hn = G $313 = k_0 < k_1 < \cdots < k_m = 6$ are two comparition series for G. Then $m=n$ and $\exists \sigma \in S_n$, st $H_{i+1}/H_{i} \cong K_{\sigma(i)+1}/K_{\sigma(i)}$ $PI.$ Induction on (a) Case 1: Hu-1 = Km-1. In this case, follows from induction on the Care 2 : Hm-1 \neq Km-1. In this care Hn-1, K_{n-1} \triangleleft G. maximal. ∞ H_{n-1} $K_{n-1} = G$ S G/Hn = k m - / Hn - $n k_{m-1}$, G/kn = $m + 1$ /Hn $n k_{m-1}$. Let $J = H_{n-1} \cap K_{m-1}$. Then J is a max normal subgo of both Hum and Kmm. Now by inductive hypotheris on Hu-1, J and Km-1, we have

\n
$$
D \{1\} = H_0 < \cdots < H_{n-1} < H_{n-1} < H_n = G
$$
\n

\n\n $D \{1\} = H_0 < \cdots < J < H_{n-1} < H_n = G$, $\sum_{i=1}^n U_i \leq G_{i+1} < G_{i+1} < G_{i+1} < G_{i+1} \}$ \n

\n\n $D \{1\} = K_0 < \cdots < J < K_{m-1} < K_m = G$, $\sum_{i=1}^n U_i \leq K_0 < \cdots < K_{m-2} < K_{m-1} < K_m = G$, $\sum_{i=1}^n U_i \leq G_{i+1} < G_{i+1} < G_{i+1} < G_{i+1} \}$ \n

\n\n $\{M \text{ is the same, the computation function } \{u, v\} \leq \{0\} \text{ and } \{0\}$ \n

\n\n $M \{M \} = K_{m-1} / J \text{ and } K_m / K_{m-1} \leq H_{m-1} / J$. $\{M \} = \{M \} = \{0\}$ \n

\n\n $M \{M \} = \{M \} = \{0\}$ \n

\n\n $M \{M \} = \{M \} = \{0\}$ \n

\n\n $M \{M \} = \{0\}$ \n

\n\n

Hô'hler program : every finite gp is built from finite simple gps ^① Classify all finite simple gps ← completed in zoo ^x g classify all possible ways of building a gp ϵ unknown from given finite simple gps

Def. ^A gp ^G is called solvable if it has ^a subnormal series whose quotient gps are all abelian In other words, a solvable gp is gp built from (successive extensions of) abelian gp. Examples . . All abelian gps are solvable * S_3 is solvable E_X S_φ is solvable • Sn is not solvable when ^u 35. • $B:=\int (\stackrel{\ast}{\circ}\stackrel{\ast}{\star})^2\stackrel{\sim}{=}GL_2(F)$ is solvable Since $U := \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right\}$ is normal in B and $B/u \in P^{x} \times P^{x}$

Bop. Every sub gp and quotient gp of a solvable gp is solvable .
Pf. If G is solvable with solvable series ${2j = k_s < k_1 < \cdots < k_n = G.}$ let HC ^G be ^a subgp. Then we have ^a series $513 = HnK_0 < HnK_1 < - < HnK_1 = k$ w Hn ki/ Hn ki- l \Rightarrow Ki/ c_{i-1} is a belian. I $H \cap k_i \rightarrow k_i / k_{i-1}$ with kernel $H \cap k_{i-1}$. So by 1^{st} iso then)

 IF G is a quotient gp of G and $\pi: G \rightarrow \widehat{G}$ projection

Let ki be the inage of ki in G. Then $\int 13 = k_0 < k_1 < - < k_n = a$. Note that $K_i / K_{i-1} \rightarrow \overline{K}_i / \overline{K}_{i-1}$ abelian Chen $k_i \rightarrow \bar{k}_i \rightarrow \bar{k}_i/\bar{k}_{i-1}$ with $|k_{i-1}|$ in the learner. S_{0} k_{i}/k_{i} \rightarrow $\overline{k_{i}}/\overline{k_{i}}$) $\qquad \qquad \Box$ Pup. Let N is G. τf N and G/N are both solvable, then Gis solvable. P_{T} let $523 = H_0 < H, \, 225$ $< H_{M} = N$ $\{1\} = \overline{k} = \overline{k}, \overline{c}$ $<\overline{k_n} = \overline{6} := 6/n$ be solvable sevies. Let $\pi: G \rightarrow \overline{G}$ and $k_i := \pi^+(k_i)$ (so $k_i = k_i / N$) Then by 3^{rd} iso thm. $\overline{K}_{c}/\overline{K}_{c-1} \cong \overline{K}_{c}/K_{c-1}$. This $\{1\}$ = Ho< H, < - < Hm = N = ko < k, < -- < kn = G $is a$ soluable series of G

Perived series. Recall that [G. G] < G is the subsp generated by $[a,b] := ab a^d b^d$ $\forall a, b \in G$

We call $EG.G1$ the 1^{st} devived subgo and denote by $G = G''$. Define the 2^{nd} devived subgo $6^{(2)} = (6')^6$,
 3^{rd} $6^{(3)} = (6'')^6$ Def. The devived series of G is $G > G^{(1)} > G^{(2)} > \cdots$ C_1 . $G = S_2$, then $S_2 > A_3 > S_1$ 3 S_1 3 ... $6 = S_s$ then $S_s > A_s > A_s > ...$ R_{γ} . G is solvable iff $G^{(k)} = 513$, for some k. $l'_{t'}$ \Leftarrow by definition => Suppose $\{1\}$ = Ho<H1< -<H1=G is a solvable series. Sime G/M_{n-1} is abelian, $G^{(0)} \subset M_{n-1}$ Thus G⁽¹⁾ Hn-2 <Hn-1. So by 2nd iso thin $G^{(0)}/(G^{(0)} \cap H_{n-2}) \cong G^{(0)}$ Hm-2 /Hm-2 < Hm-1 /Hn-2 abellan S_{0} $G^{(2)}$ \subset $G^{(1)}$ \cap H_{n-2} \subset H_{n-2} . Repeating this argument, we have $6^{(2)}$ = Hn-i $\forall \delta$. Hence $G^{(k)} = \{1\}$ for some k