4th iso thm. let
$$N \subseteq G$$
 and $\pi_N : G \rightarrow G/N$ be the projection map.
Then ⁽¹⁾TT: $\{L \mid N \leq L < G\} \rightarrow \{\overline{L} < G/N\}, L \mapsto \pi_N(L)\}$
is a brijection.
(2) TT gives a biflection between the normal subges $L \subseteq G$
with $N < L$ with the normal subges $\overline{L} \circ f G/N$.
Pf. (1) For any $\overline{L} < G/N$, $\pi_N^{-1}(\overline{L})$ is a subge of G that
contains N . Moreover $L \mapsto \pi_N(L)$, $\overline{L} \mapsto \pi_N^{-1}(\overline{L})$
are inverse to each other.
(2) $gL = Lg$ in $G \implies (gN)L = L(gN)$ in G/N .
So L normal.
Tf \overline{L} is portual, then $\pi_N(gLg^{-1}) = \pi_N(G) \pi_N(L) \pi_N(G)^{-1}$
 $= \overline{L}$
So $gLg^{-1} \subseteq \pi_N^{-1}(\overline{L}) = L$ So. L is normal.
TI.

Pef. A normal subgp MZG is maximal if \$ NJG s.t. M⊊N⊊G. Prop. MJG is more aff GIM is simple. \Box pf. By 4th iso thm. Rink. Simple gps are the "building blocks" of Jps. Series of gps. Def. let \$13=Ho<H, <... < Hn=G be a finite chain of subgrs We say that it is Subnormal if His Hi+1 Vi normal if Hid G Hi. The quotient gps Hi+1/Hi are called the quotient (or factor) gps of the series. Def. A submornal (rep. normal) series {H:3 is a composition (verp. principal) series of all its quotient gp Hi+1/H: are simple. Here ? Hi +1 /Hi ? are now called composition factors. Knk: Every finite gp has a composition series. / Z does not have · Given a composition series ${1} = H_0 < H_1 < \dots < H_n = G_1$ We have a sequence of short exact sequences

Hölder program. every finite gp is built from finite simple gps D Classify all finite simple gps < completed in 200% 3 Classify all possible ways of building a gp < unknown from given finite simple gps

Def. A gp G is called solvable if it has a subnormal series whose gnotient gps are all abelian In other words, a solvable gp is gp built from (successive extensions of) abelian gp. Examples. All abelian gps are solvable · Sz is solvable Ex Sy is solvable · Sn is not solvable when NZS • $B := \begin{cases} \binom{*}{0} \\ \binom{*}{2} \end{cases} \subseteq Gl_2(F)$ is solvable Since U:= {(0, *)} is normal in B and B/u= F*F*

Rop. Every subgo and quotient go of a solvable go is solvable Pf. If G is solvable with solvable series $\{2\} = k \cdot \langle k, \langle \cdots \rangle \langle k_n \rangle = G_n$ Let H<G be a subgp. Then we have a series 523 = Hnko < Hnk, < -- < Hn kn =k. where HAKi/HAKi-1 a Ki/Ki-1 is a belian. (HAK: -> K:/Kin with bernel HAKin. So by 1st iso than)

If G is a quotient gp of G and A: G -> G projection

let Ki be the maye of K: in G. Then $\$1\$=\overline{k}_0<\overline{k}_1<\cdots<\overline{k}_n=\overline{k}.$ ~ abelian Note that Ki/Ki-1 ->> Ki/Ki-1 Chere Ki -> Ki -> Ki/Ki-1 with Ki-1 in the larvel. So $k_i/k_{i'} \rightarrow k_i/k_{i'-1}$). Rup. Let NSG. If N and G/N are both solvable, then G is solvable. Pf Let \$23 = H6 < H, < -- $< H_{m} = N$ 523 = Ko < K, < .. < kn = G := G/N be solvable series. Let $\pi: G \rightarrow \overline{G}$ and $k_0 := \pi^{-1}(\overline{k_0})$, $(S_0, \overline{k_0} = k_0/N)$ Then by 3rd iso thm. Ki/Ki-1 = Ki/Ki-1. Thus $\{1\} = H_0 < H_1 < \cdots < H_m = N = k_0 < k_1 < \cdots < k_n = G$ is a solvable series of G. a

Perived series. Recall that [G,G] <1 G is the subgp generated by [a,6]:= a6 at 6 + Ha,66G

We call [G.G.] the 1st derived subge and denote by G'= G" Define the 2nd derived subgp $G^{(2)} = (G')'$, 3nd $G^{(3)} = (G'')'$ Def. The devived series of G is $G > G^{(1)} > G^{(2)} > \cdots$ eg. G=Sz, then Sz > Az > S13 > S13 > ... G=Ss then Ss>As>As>... Rop. G is solvable iff G (= SI], for some k. If. E by definition => Suppose SZ = Ho < H1 < -- < Hn = G is a solvable series. Sime G/Hn-1 is abelian, G^{C1)} CHn-1 Thus G (1) Han-2 < Hun-1. So by 2nd iso thm G (1) (G (1) A Hn-2) ~ G (1) Hn-2 / Hn-2 < Hn-1 / Hn-2 abelian So $G^{(2)} \subset G^{(1)} \cap H_{n-2} \subset H_{n-2}$. Repeating this argument, we have G' - Hwi Vo. Hence G (*) = SZS for some K